 

Abstract

The University of Portsmouth’s School of Computing is in the process of developing the Student and Unit Management System. The purpose of this project is to implement the SUMS – Maintain system; a module of the Student and Unit Management System.
This report aims to provide a detailed description of the development process, from design to implementation. It will also provide an insight into the technologies and frameworks, as well as design principles and best practices, as applied, in realising an enterprise application.

TABLE OF CONTENTS

31
Introduction


31.1
The Problem Background


41.2
Project Aims


41.3
Project Objectives


51.4
Assumptions and Constraints


51.5
Report Overview


92
Initial Review


92.1
The Web


102.2
How the Web Works


102.3
The Common Gateway Interface


122.4
Alternatives to CGI


122.5
Java


143
Development Review


143.1
Java Platform, Enterprise Edition


153.1.1
Java EE 5 APIs


153.1.2
Servlets


183.1.3
JavaServer Pages


193.1.3.1
JSP Standard Tag Library & Expression Language


203.1.4
Enterprise JavaBeans


223.1.4.1
Entity bean


223.1.4.2
Session bean


233.1.4.3
Message-driven beans


233.1.5
Java Persistence API


243.1.5.1
Java Annotations


253.1.5.2
The EntityManager


263.1.5.3
The Java Persistence Query Language


283.1.6
Java Database Connectivity


293.1.6.1
BLOBs and CLOBs


293.1.7
Java Naming and Directory Interface


303.2
Apache Struts


313.2.1
The Model-View-Controller Design Pattern


323.2.2
Using Struts to Implement the MVC Pattern


323.2.2.1
Struts


363.2.2.2
Struts2


404
System and Requirements Analysis


404.1
Project Methodology


414.2
Current State of SUMS


434.3
System Requirements


434.3.1
System Actors


444.3.2
Use Cases


454.3.2.1
Add Student


454.3.2.2
Add Staff


454.3.2.3
Add Cohort


464.3.2.4
Add Course


464.3.2.5
Register Course


474.3.2.6
Add Unit


474.3.2.7
Register Unit


474.3.3
UML Use Case Diagram


494.3.4
Further Requirements


505
Design


505.1
The Persistence Tier


505.1.1
The Data Model


525.1.2
The Object Model


545.2
The Presentation Tier


545.2.1
Blueprints


565.2.2
Schematics


575.3
The Business Tier


575.3.1
Session Façade Pattern


585.3.2
Business Delegate Pattern


606
Implementation


606.1
Implementing the Persistence Tier


656.2
Implementing the Business Tier


666.3
Implementing the Presentation Tier


697
Testing and Evaluation


697.1
Testing


737.2
Evaluation


758
Conclusion


758.1
Learning Outcomes


768.2
Project Result


77Bibliography


APPENDIX A – Project Specification Document

APPENDIX B – Project Plan

APPENDIX C – Software Requirements Specification



Acknowledgement
I would like to thank my parents, brother, and family in general, for all the support and guidance they have provided over the course of this project. You really got me through the hard times.

I would also like to thank my supervisor, Dr Jim Briggs, for sharing his time with me towards fulfilling this report. Your effort is greatly appreciated and I hope I do not let you down.

Finally, I would like to thank my friends for their ideas and support. You all know yourselves.

1 Introduction

This report documents the entire process of engineering the SUMS – Maintain system, from the planning and design phase to implementation and testing. This section explores the project background and provides an insight into the project aims and objectives, and deliverables. An overview of the structure of the document is also provided.
1.1 The Problem Background
The University of Portsmouth’s School of Computing currently operates a system to handle the process of tracking student final year project units from the point of initial project choices through project approval, supervisor and moderator allocation, project milestones, and up until the date of submission. This system is known as the Project Units Management System, or simply PUMS.
PUMS was developed using the HyperText Transfer protocol, the Common Gateway Interface and a flat-file based data storage. The Common Gateway Interface, although appropriate at the time of development, proved to be highly inefficient as the demands on the system increased. This, coupled with the system’s growing ineptitude for scalability as the requirements for such a management system changed, meant a need for a more robust solution.
October 2004 saw this need finally addressed with the first steps taken in implementing a new system; the Student and Unit Management System, as envisioned by Dr Jim Briggs, a principal lecturer and MSc projects coordinator at the University. Unfortunately this attempt would prove largely unsuccessful with only the system’s back-end database design realised (Powell, 2005). Over the next couple of years, development of the Student and Unit management System, or simply SUMS, would continue with an approach towards modular development introduced. Each module to be developed would focus on providing key functionality relating to SUMS. This brings us to the purpose of this project, which is to provide a solution for the web-based management of the SUMS back-end. This solution is referred to as the SUMS – Maintain system.
Figure 1‑1 shows the SUMS – Maintain system module and how it integrates with other systems within the SUMS architecture.

[image: image1.png]Waintain Bt Jupiter Link PUNS Link

SUhs

Regitration}——{Tazs: }——{ Ascatian }——{ Wonitoring || Submizion || Assesment }———|_Feadbad





Figure 1‑1 – SUMS system architecture
1.2 Project Aims

This project primarily aims to build a web-based application for the performance of general administrative actions required in SUMS. The system will work with data stored in the central SUMS database and will be available to staff within the University of Portsmouth’s School of Computing having granted administrative rights on the SUMS database.
1.3 Project Objectives

The set of objectives required to be accomplished by the project is defined within the specification document.

The objectives can be summarised as follows:
· Elicit and provide a thorough, yet precise, documentation on both formal and informal project requirements.

· Communicate an understanding of the current system, backed up by an in-depth analysis.
· Research key technologies and provide relevant documentation investigating the feasibility of such technologies in supporting the design process.

· Design the system, employing industry standard best practise principles.

· Implement the system, performing thorough testing, and even using industry standard testing frameworks, where appropriate.

· Provide technical documentation where appropriate.

· Deliver solution to client, on time and, at least, satisfying the critical functional requirements.
1.4 Assumptions and Constraints

The process of authentication and authorisation are assumed to be outside the scope of the project and have been excluded.

Time and “learning curve” constraints mean an agreement has been reached with the client on the priority of functionalities to be included within the system.
1.5 Report Overview

The following is a summary on the contents of the remainder of this document:
Chapter 2 - Initial Review
This chapter provides an overview of the required terms and technologies if to have a basic understanding of the principles and concepts of the topics covered later in the report.
Chapter 3 - Development Review
This chapter provides an insight into the key technologies used in developing the SUMS – Maintain system. It also investigates the frameworks and design patterns applied throughout the development and implementation phases of the project.
Chapter 4 - System and Requirements Analysis
This chapter establishes the requirements for the project deliverable and how they were elicited. It also examines the methodology of approach to the project lifecycle.

Chapter 5 - Design
This chapter illustrates how the gathered requirements were realised during the design phase. It explores the design process from a three-tiered bird’s-eye view, identifying significant design principles applied within the project.

Chapter 6 - Implementation
This chapter illustrates how the design principles were realised during the implementation phase. It explores the implementation process from a three-tiered bird’s-eye view.

Chapter 7 - Testing and Evaluation
This chapter explores the process of testing the system against requirements and provides an evaluation on the project based on the results.

Chapter 8 - Conclusion
The final chapter of the report provides a reflection on the project, identifying learning outcomes, and finally, declaring the final word on the project.
2 Initial Review
The following sections provide a brief look at the World Wide Web (or the Web) and the role that Java plays in it.

2.1 The Web

Created around 1990 by Tim Berners-Lee and Robert Cailliau, the Web is officially described as “a wide-area hypermedia information retrieval initiative aiming to give universal access to a large universe of documents” (“World Wide Web Project,” 1992). The Web was designed around a crucial underlying concept whereby certain words would function as links to other documents or sections in a document (Haan, Lavandowska, Panduranga & Perrumal, 2004), thereby creating an interactive hypertext system. Unlike the predecessors, the Web as a hypertext system was different; the concept of unidirectional links, as opposed to bidirectional ones, was implemented, and this meant confirmation from owners of resources to be accessed was no longer required. Consequently, this new perspective necessitated a new system of execution. The Web’s operation was therefore designed to be dependent on the use of the Uniform Resource Identifier (URI)
, which uniquely identifies resources such as Web pages, the HyperText Transfer Protocol (HTTP), which specifies the mode of communication from the source to destination, and the HyperText Markup Language (HTML), which defines the underlying structure of hypertext documents.
Not to be confused with the Web, the internet is in-fact the physical network linking computers worldwide. Services such as e-mail, streaming video, multiplayer games and the Web inclusive, then sit on the foundations of the internet (Haan et al., 2004).
2.2 How the Web Works

As mentioned above, the Web takes advantage of the URI, HTTP and HTML standards in its operation. However, a typical Web transaction is governed by the principles of the client-server model of computing. This requires for a separation being made to identify the two parties to be involved in communications: the Web client (usually a Web browser) and the Web server, with communications between both parties facilitated through the exchange of messages. In a typical Web transaction, the Web client sends a message to the Web server requesting a particular resource specified by a URI, and the Web server responds with a corresponding message containing the HTML for the resource if available. These messages travel over the Web using HTTP.
Figure 2‑1 shows the stages in a typical Web transaction involving a Web client (User’s computer) and a Web server, whereby HTML files requested are retrieved from the Web server’s disk.
[image: image2.png]User's Computer

1. Browser requests HTML.

3, Server sends fle back to browser

2. Server finds fle on disk

Server

Server's Disk




Figure 2‑1 – A typical Web transaction [Pekowsky, 2003]

2.3 The Common Gateway Interface

Earlier implementations of the Web were characterized by the retrieval of static HTML files by Web servers but as the information being requested evolved, there was a need for a new mechanism to handle this development. The Common Gateway Interface (CGI) provided an initial solution to this. CGI is considered “a standard for external programs to interface with information servers, such as HTTP or Web servers” (NCSA, n.d.). With CGI, Web users can not only request HTML pages but also execute programs on Web servers. In a typical Web transaction implementing the CGI model, a Web client sends a message to the Web server requesting a resource specified by a URI, in the same way as the canonical client-server model, but now associated to a CGI program. The Web server initially identifies the appropriate CGI script to handle the request received from the Web client, and after converting the Web client request into a CGI request, executes the CGI script. The CGI response is then converted to a HTTP response suitable for the Web client.
Figure 2‑2 illustrates an implementation of the CGI model within a typical Web transaction.
[image: image3.png]User's Computer

|+ ol generates HTML—

1. Browser requests HTML.

fe—s. Server sends HTML back to browser-

2. Server finds program on disk

3 Server executes program,
passing info through the
CGl protocol

Server's Disk




Figure 2‑2 – An implementation of the CGI model [Pekowsky, 2003]
CGI proved to be extremely popular with Web application developers but as traffic demands on the Web grew, the CGI approach ultimately proved to be inefficient. This was mainly due to CGI’s approach to handling requests. With CGI, every time a request is received, the Web server needs to locate and invoke the relevant program. Worse, a new copy of the program is required to be run for every request received, because for each request received, once finished processing, the relevant program exits and disappears from memory (Pekowsky, 2003). Consequently, due to their short lifespan, CGI programs are considered to be stateless with data footprints being lost between requests. 
2.4 Alternatives to CGI
Many alternatives and enhancements to CGI have emerged, each with a claim to eliminating the drawbacks of the classical CGI model. Typically, these alternatives attempt to achieve this either by allowing for CGI programs, once finished processing, to stay resident in memory, or by introducing an interpreter, also maintained in memory. In both cases, the CGI alternatives looked to eliminate the overhead of having to load a new copy of either the CGI program or interpreter for each request. Examples of CGI alternatives include Perl, PHP, Microsoft’s Active Server Pages (ASP), and more recently, Ruby on Rails. In fact, the success of ASP technology, as an alternative to CGI, was the influential catalyst in the development of Sun Microsystems’ Java Web technology.
2.5 Java

With the advent of Java in the mid-1990s, a new concept in Web development was introduced and Web developers aiming to provide dynamic content were now offered a new method in the form of Java applets. Java applets were designed around the core Java functionality of platform independence (Write Once, Run Anywhere™ - the same Java bytecode capable of running on different operating systems) and hence, can run in a Web client using a Java Virtual Machine (JVM). In a typical Web transaction involving a Java applet, the Web client downloads the Java applet code from the Web server which is then, either, embedded into a Web page in a Web browser, or, opened in a new window displaying the applet’s user interface.
Figure 2‑3 shows a Java applet embedded within a Web browser.
[image: image4.png]Tumbling DuKe - Mozilla Firefox

Ele Edt View Hstory Bookmarks Toos Help

G- @ (G} [ repieve. s comfoppetsother{Tumblngbukefindes el

widperia (English)

Tumbling Duke

The source

Applet Tumblelten started





Figure 2‑3 – A Java applet in action

Nevertheless, Java applets failed to rise in popularity. This was possibly due to Java’s poor support for the creation of graphical user interface (GUI) applications at the time (Haan et al., 2004). However, Sun
 has since released updated Java versions addressing the GUI issue, and more importantly, developed the innovative Java servlet, JavaServer Pages and JavaBeans technologies aimed at providing an even easier means for creating dynamic Web content. These Java technologies formed the foundation upon which Sun set about building the Java Web technology which is the Java Platform, Enterprise Edition.
3 Development Review
The following sections outline the features of the Java Platform, Enterprise Edition, its role within the Java programming language, and the basic concepts surrounding the process of developing enterprise applications.
3.1 Java Platform, Enterprise Edition
The Java Platform, Enterprise Edition or Java EE (formerly referred to as Java 2 Platform, Enterprise Edition or J2EE) is one of the three platforms which make up the Java programming language
. Developed by Sun, the Java EE platform is in fact built on top of the Java Platform, Standard Edition (or Java SE). By utilizing the core functionalities of the Java programming language provided within the Java SE platform, Java EE is able to provide an Application Programming Interface (API)
, and an environment to help with the development and implementation of large scale, multi-tiered, scalable, reliable, and secure enterprise applications (“Your First Cup,” 2006). The current version of the platform, being version 5 (Java EE 5), has been designed with a view to streamlining the many features of predecessors to the Java EE 5 platform, while also adding convenience, improving performance, and reducing development time (Stearns, Chinnichi & Sahoo, 2006). Furthermore, the availability of the Java EE implementation for free has meant an increased support from, and communication with the open source movement. Consequently, a great many open source tools, which range from Integrated Development Environments (IDEs), such as NetBeans and Eclipse, to application frameworks, such as Apache Struts and Hibernate, have been made available to extend the Java EE platform and thus simplify development. The introduction of the Java Persistence API into the Java EE 5 platform perhaps epitomises the influence of the open source community.
3.1.1 Java EE 5 APIs
The following sections give a concise description of the technologies required, and Java EE 5 APIs used in the development of enterprise applications.
Figure 3‑1 illustrates the Java EE 5 platform showing the various APIs and technologies available in each Java EE container type.
[image: image5.emf]
Figure 3‑1 – Java EE 5 Platform [Jendrock et al., 2006]
3.1.2 Servlets
A servlet is considered to be a generic server extension – a Java class to extend the functionality of a server (Hunter, 1998). Like Java itself, servlets are designed with platform-independence a priority and therefore run inside a JVM (on a server) in the server-side of an application. Servlets are intended for use in generating dynamic content. This is achieved by utilizing the Java servlet API. 
The Java servlet API effectively provides a means for a servlet to receive a client request, generate a response containing a HTML or XML
 document based on the request, and send the response to the client. The Java servlet API also allows the servlet to maintain session information on behalf of a client and interact with other servlets. Consequently the Java servlet is stateful with data footprints capable of being preserved between requests.

The lifecycle of a servlet can be summarised into the following phases:
Initialization phase
The Web container loads the servlet on start-up and invokes the init method. In so doing, the Web container prepares the servlet to service any client-requests.
Service phase
For every request received, the Web container calls the service method of the servlet in a separate thread. The service method then determines the kind of HTTP request (GET, POST, etc) and calls the method (doGet, doPost, etc) accordingly.
Destruction phase
The Web container invokes the destroy method, allowing the servlet to terminate gracefully and tidy any created resources before going out of service.
Example 3‑1 shows the typical structure of a servlet implementation with two methods defined: the doGet, used to display a response to a GET HTTP request, and the doPost, to handle posted data.

[image: image6]
Example 3‑1 – Typical structure of a servlet
3.1.3 JavaServer Pages

Section 3.1.2 introduced servlets, Java EE’s primary mechanism for creating dynamic content on Web browsers. While servlets proved to be a great server-side technology in Web development, the actual process of utilizing servlets was highly time consuming and, for that reason, largely considered to be inefficient. Sun’s solution was the JavaServer Pages (JSP) technology. Built on top of the Java servlet API, JSP provide a highly integrated dynamic content system which maintains all the advantages of Java servlets without compromising on development time (Farley, Crawford & Malani, 2005). Unlike working with servlets, where the associated complexities are brought about by HTML being embedded directly into programming code, JSP technology allows for specialized scripting code (or active elements) to be embedded directly into HTML pages (Bergsten, 2003), thereby offering Web developers with greater simplicity and control. 
Example 3‑2 illustrates a simple JSP page which utilizes dynamic elements to display a greeting based on the time of day.

[image: image7]
Example 3‑2 – Structure of a simple JSP page [Bergsten, 2003]

Much like servlets, JSP follows a similar three-phase lifecycle: initialisation, service, and destruction. The phases of the JSP lifecycle provide the same services as their equivalent within the servlet lifecycle, however, with JSP, the jspInit, _jspService and jspDestroy methods are invoked at the initialization, service and destruction phases respectively. As previously stated, JSP technology is built on top of servlet technology, and a typical JSP deployment provides evidence of this relationship. The first time a JSP page is accessed, a JSP compiler, located within the Web container, automatically parses the JSP, transforming it into the equivalent in servlet code. Consequently, the difference between servlets and JSP is the syntax they offer for creating the same functionality (Falkner & Jones, 2003). 
3.1.3.1 JSP Standard Tag Library & Expression Language

As illustrated in Example 3‑2, it is possible to express potentially complex logic with simple scriptlets. However, this tends to leave a JSP page looking more like Java code and less like HTML, and even worse, having the business logic creep into the presentation layer. The JavaServer Pages Standard Tag Library (JSTL) and the JavaServer Pages Expression Language (JSP EL)
 were both introduced to tackle these problems.
The JSP EL is “designed to be simple, robust, and minimally impact backwards compatibility issues” (Falkner & Jones, 2003) with previous versions of the JSP specification. The JSP EL achieves this through the availability of crucial features, such as better attribute handling, string literals usage, arithmetic and logical operations management, function binding, and reserve words definition, within the JSP EL syntax. 
Table 3‑1 shows a JSP expression and the direct equivalent when authored using the JSP EL.
	Standard JSP
	

	JSP EL
	


Table 3‑1 – The JSP EL syntax [Adapted from Falkner & Jones, 2003]
While the JSP EL provided JSP developers with a viable alternative approach to the use of directly embedded Java code, the JSP EL still proved inadequate in the implementation of page logic. That’s where the JavaServer Pages Standard Tag Library (JSTL) comes in. Building on Sun’s Java mentality of code reuse, the JSTL is intended to provide a library of JSP tags representing common JSP programming functions. These programming functions include variable handling, flow control (regarding loops and conditional logic), URL
 management, and internationalization. The JSP page shown in Example 3‑2 also serves as an implementation for JSTL, with the line, <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>, mapping the JSTL tags to a namespace within the JSP.
3.1.4 Enterprise JavaBeans

Enterprise JavaBeans (EJB) is a server-side component framework that simplifies the process of building enterprise-class, scalable, reliable, and secure applications in Java (Sriganesh, Brose & Silverman, 2006). EJB is defined by a specification, EJB 3.0 being the latest, detailing a standard on how an application server handles common concerns such as persistence, transactional integrity and security. Consequently, EJB is considered to be implementation independent as it is now possible for EJB, developed and deployed in one application server, migrated across to different application servers (Burke & Monson-Haefel, 2006).
Figure 3‑2 shows a high-level view of the EJB architecture.
[image: image8.png]EJB Server

EJB Container
B HTTP | web | RMVIOP
rowser Server |
Enterprise Beans
RMUIOP.
Applet
Deployment |
Fies | 1
CORBA nop | L. !
Component
Noi [ [ ams | |anva wai

JBC/

Enterprise Information Tier Connectors

Legacy
Systems





Figure 3‑2 – A high-level view of the EJB architecture
 [Cavaness & Keeton, 2001]
There are three fundamental types of EJB; entity, session and message-driven, with the key difference between them lying in their method of management within the EJB container during their lifetime, and also the services available to them through the container (Farley et al., 2005).
3.1.4.1 Entity bean

An entity bean represents “a persistent object corresponding to a row in a relational database table (or several related rows in multiple tables)” (Cavaness & Keeton, 2001). “Because the data that defines the entity object is stored in a database, entity beans have state that persists beyond the lifetime of the processes in which they execute”, and “short of a catastrophic database failure, are intended to survive a server crash” (Cavaness & Keeton, 2001). Entity beans that represent the same persistent entity, and are being requested simultaneously by multiple clients, are still capable of fulfilling their roles thanks to the EJB container providing concurrent access and transactions management (Farley et al., 2005). 
3.1.4.2 Session bean
Session beans fill the gap left by entity beans. Unlike entity beans, session beans are not a representation of data in a database, but instead a representation of business logic. Session beans are typically accessed by one client at a time and, although non-persistent, still receive the same transactional, security and concurrency support provided to entity beans (Cavaness & Keeton, 2001; Farley et al., 2005).

There are two basic types of session beans: 
Stateful 

This is an extension of the client (Burke & Monson-Haefel, 2006). Because the client maintains a rolling communication between itself and the stateful session bean, the bean is said to be in a conversational state. This state is retained for the duration of the client-bean session (Jendrock et al., 2006). 
Stateless

This, on the other hand, does not maintain a conversational state with the client, but instead maintains a client-specific state that lives for the duration of invocation of methods of the stateless session bean by the client (Burke & Monson-Haefel, 2006).
3.1.4.3 Message-driven beans
The message-driven bean, in principle, resembles a stateless session bean, but differs in the means by which clients gain access. Unlike session beans, where interfaces are used, message-driven beans provide access to the client through the Java Message Service (JMS). Consequently, message-driven beans normally act as a JMS message listener
, with the messages received from various Java EE applications and components processed asynchronously (Jendrock et al., 2006). 
3.1.5 Java Persistence API
A major enhancement in EJB technology, EJB 3.0 sees the introduction of the Java Persistence API. Building on the frailties of EJB 2.1 entity beans, and ideas from the leading open-source persistent frameworks and object-relational mapping tools, such as Hibernate and Oracle TopLink, the Java Persistence API is designed to offer a simpler, yet robust, entity persistence model which deals with the way relational data is mapped to Java objects (“persistent entities”), the way these objects are stored in a relational database so they can be accessed at a later time, and the continued existence of an entity’s state even after the application that uses it ends (Biswas & Ort, 2006). The Java Persistence API meets its objectives by modelling persistent entities as Plain Old Java Objects (POJOs). The expressions and relationships connecting these POJOs are then defined through the use of object-relational mapping metadata, in the form of Java annotations or XML descriptors (EJB 2.1 technology), with the Java Persistence Query Language allowing for queries to be made against these entities. 
3.1.5.1 Java Annotations

Keeping with the overall theme of “ease of development” in EJB 3.0 and Java EE technology, Java annotations have been deeply incorporated into the Java Persistence API to provide a simpler yet rigid means for the configuration of service-related attributes within enterprise applications (Heider, 2007). Java annotations are designed to eliminate the verbosity associated with XML descriptors through the use of hard-coded annotation values. These annotation values are made up of an asperand
 preceding an annotation type (as highlighted in Table 3‑2), sometimes followed by a parenthetical list of element-value pairs (Biswas & Ort, 2006). Although designed to replace XML descriptors, annotations can in fact be used alongside XML descriptors, in which case, any values explicitly specified in the XML descriptor overrides any values specified in annotations (Jendrock et al., 2006).
	
	EJB 2.1
	EJB 3.0

	Entity
	...

//access methods

public abstract String getAddressID();

public abstract void setAddressID(String id);

...

}


	...

private String addressID;

...

public Address(String id) {

setAddressID(id);

...

}

...

@Column(name=″addressID″)
public String getAddressID() {

...

}

...

}



	XML Descriptor
	<ejb-jar version=″2.1″ xsi:schemalocation= ...>

<display-name>Ejb1</display-name>

<enterprise-beans>

<entity>

<ejb-name>AddressBean</ejb-name>

...

<cmp-field>

<field-name>addressID</field-name>

</cmp-field>

...

</entity>

...

</enterprise-beans>

...

</ejb-jar>


	Not required


Table 3‑2 – Java annotations in EJB 3.0 [Adapted from Biswas & Ort, 2006]
3.1.5.2 The EntityManager

The EntityManager is implemented as an interface (Example 3‑3) sitting at the core of the Java Persistence API, and acts as the central service managing all persistence actions. The EntityManager is responsible for the creation of persistent entities from simple POJOs, and the object-relational mapping of entities to their data source. It is also responsible for the provision of APIs to support query creation, objects location and synchronization, and database insertions (Burke & Monson-Haefel, 2006; Heider, 2007).

[image: image9]
Example 3‑3 – The EntityManager interface [Sriganesh et al., 2006]
A new feature in EJB 3.0 is the possibility for instances of the EntityManager to be declared through dependency injection. In a Java EE environment, the @PersistenceContext annotation may be used to declare a dependency on a persistence context and have the EntityManager for that persistence context acquired automatically (Keith & Schincariol, 2006).
Example 3‑4 demonstrates the process of acquiring an EntityManager through dependency injection.

[image: image10]
Example 3‑4 – Injecting an EntityManager instance

3.1.5.3 The Java Persistence Query Language

The Java Persistence Query Language (JPQL) defines queries for entities and their persistent state that work regardless of the underlying data store (Jendrock et al., 2006). JPQL employs syntax, similar to SQL
 (Table 3‑3), in providing support for select, update and delete statements, comparison and conditional expressions, traversals, and bulk operations. However, unlike SQL, the JPQL handles objects or values based on entity abstract schema types and relationships between them (Jendrock et al., 2006). That is, JPQL queries resemble SQL queries in syntax, but operate against entity objects rather than directly with database tables (“Java Persistence API,” 2007). Hence, queries defined by the JPQL are guaranteed to be portable across databases. Even so, the JPQL still provides support for native queries using the SQL of the target database. As a result, the ANSI
 SQL queries defined in Table 3‑3 would produce the same result as the equivalent JPQL query.
	ANSI SQL
	JPQL

	SELECT p.*
FROM emp e, phone p

WHERE e.id = p.emp_id
	SELECT p

FROM Employee e

JOIN e.phones p

	SELECT e.*, d.*

FROM emp e, dept d

WHERE e.dept_id = d.id (+)
	SELECT e, d

FROM Employee e

LEFT JOIN e.department d

	SELECT DISTINCT d.*

FROM project p, emp_projects ep, emp e,

     dept d, address a

WHERE p.id = ep.project_id AND
      ep.emp_id = e.id AND
      e.dept_id = d.id AND
      e.address_id = a.id AND
      p.name = 'Release1' AND
      a.state = 'CA'
	SELECT DISTINCT d

FROM Project p

JOIN p.employees e

JOIN e.department d

JOIN e.address a

WHERE p.name = 'Release1' AND
      a.state = 'CA'


Table 3‑3 – The JPQL syntax [Adapted from Keith & Schincariol, 2006]
3.1.6 Java Database Connectivity
With database systems each having their unique API, writing code capable of interfacing with databases from different vendors proved to be difficult. Cross-database APIs developed, such as Microsoft’s Open Database Connectivity (ODBC) API, attempt to address this, but ultimately have the tendency to be limited to a particular platform. The Java Database connectivity (JDBC) API is Sun’s attempt at providing a set of interfaces, encapsulating major database functionality, including query management, result processing, and determining configuration information, and thus creating a platform-neutral interface between databases and Java (Farley et al., 2005). Typically, an application makes use of a JDBC driver, which is a vendor implementation of the interfaces defined by the JDBC API, in communicating with a database without any knowledge of the actual driver implementation.
The JDBC architecture is illustrated in Figure 3‑3.
[image: image11.png]Resultset I

Resultset I

Statement I

Preparedstatement]

Connection

Application

DriverManager

Oradle driver

£

JDBC-0DBC
bridge

0DBC driver

=





Figure 3‑3 – The JDBC architecture [Farley et al., 2005]

3.1.6.1 BLOBs and CLOBs

Large Objects (LOB) were introduced by vendors as a means to store relatively large volume of data as a single entity within a database management system. Binary or character data could be stored as Binary Large Objects (BLOBs) or Character Large Objects (CLOBs), respectively. Although the JDBC specification, 3.0 being the latest, provides support for the manipulation of the contents of BLOBs and CLOBs, JDBC driver support for BLOBs and CLOBs types, if at all supported by vendors, tend to vary wildly.
3.1.7 Java Naming and Directory Interface

In a multi-tier enterprise application, the Client tier (browser), Web tier (Web server), Application tier (application server), and the Enterprise Information System tier (RDBMS and ERP systems
) can be decentralized (located on different machines), potentially creating a scenario where locating one another for services is difficult or indeed impossible (Cavaness & Keeton, 2001). That’s where the Java Naming and Directory Interface (JNDI) service comes in. The JNDI API provides a set of interfaces and classes which enable Java applications to gain access to a variety of naming and directory services. This is similar to how internet protocol (IP) addresses are mapped to a logical name using the internet Domain Name Service (DNS). The architecture of JNDI is somewhat like JDBC (Figure 3‑3) in that a standard protocol-independent API is built on top of a protocol-specific driver or vendor implementation (Farley et al., 2005). This vendor implementation is known as a Service Provider Interface (SPI), and is required to take advantage of JNDI services.
The JNDI architecture is illustrated in Figure 3‑4.
[image: image12.png]Binding Awibutes

Context DirContext

InitialContext '

{ Service provider interface
NamingManager I

Application

§ [ 1 ]
| Flesystem senvice LDAP servce RMIservice. '
g Diovider povider provider ;

A7,
diectory

sty




Figure 3‑4 – The JNDI architecture [Farley et al., 2005]
3.2 Apache Struts

Apache Struts (formerly known as Jakarta Struts) is the popular open-source framework for developing Web applications in Java. The Struts framework is built on top of servlet technology. Developed in response to concerns over Web applications often mixing business and application logic with presentation, Struts operates by means of a specific paradigm, or design pattern, allowing developers to split potentially large and complex Web applications into small, manageable parts that communicate with one another via well-defined interfaces (Robinson & Finkelstein, 2004). This paradigm of structuring applications through “separation of concerns” is called the Model-View-Controller design pattern.
3.2.1 The Model-View-Controller Design Pattern
Model-View-Controller (MVC) is a design pattern that allows for the clean separation of the presentation, business, and data logic into self-contained software constructs, with emphasis placed on building applications through declarative programming (Carnell & Harrop, 2006). The MVC design pattern separates application concerns into three layers of functionality: model, view, and controller (Figure 3‑5). This separation is intended to introduce a sense of layer-independence, where changes made in one layer do not affect or induce changes in other layers.
[image: image13.png]Model

View Selection

User Actions

[Controllel

Events

> € Actions





Figure 3‑5 – An overview of the MVC architecture [Husted et al., 2002, cited by Ruiz, 2006]

Model
A model is a representation of business data and business logic or operations that govern access and modification of this business data (Singh et al., 2002). That is, a model controls how data is accessed and persisted.
View

A view is a representation of the contents of a model. That is, a view handles how data, retrieved from the model, is presented to the client.
Controller

A controller controls data flow and transformation between model and view (Doray, 2006).
The MVC design pattern offers several benefits, including greater flexibility, and ease of testing and maintenance, however, close coupling between view and controller, and both to model, could mean strict separation of layers is difficult, if not impossible, and changes in one layer inevitably requires parallel changes in other layers.
3.2.2 Using Struts to Implement the MVC Pattern
Struts relies on JSPs, servlets and Java classes in order to implement the MVC design pattern; the model is implemented via Java classes (POJOs), the view via JSPs, and the controller via servlets. Although Struts does not require or provide model or view components specific to the MVC pattern, it does implement the controller (Robinson & Finkelstein, 2004) through the use of several special objects. These objects are designed to assist with workflow and data access, as well as binding the three layers and allowing communication between them.

3.2.2.1 Struts

The initial release of Struts involved the using the Struts ActionServlet, Action, ActionForm, ActionForward, and ActionMapping objects in implementing the MVC pattern.
Figure 3‑7 illustrates how Struts implements the MVC pattern.
[image: image14.png]4 Action class
‘//' Model

BN 3 Actionforn Class
ActionServlet

Web browser | ‘//'
(LA
displaying Controller

apage ——]

View

5P Page

struts-config.xml





Figure 3‑6 – The Struts implementation of an MVC pattern [Carnell & Harrop, 2006]
3.2.2.1.1 ActionServlet
The Struts ActionServlet acts as the main Struts controller component in the Struts MVC implementation. Defined by the web.xml deployment descriptor file (Example 3‑5), the ActionServlet performs the task of handling all user requests for Struts-managed URIs usually specified with a *.do extension. The data in these requests are then collected by an appropriate RequestProcessor and put into an ActionForm where it is determined what actions need to be taken.


[image: image15]
Example 3‑5 – Configuring the Struts ActionServlet

3.2.2.1.2 ActionForm

The Struts ActionForm represents a simple JavaBean class (also known as form bean) used by an Action class to retrieve form data submitted by a user request using either the GET or POST method. The ActionForm class will have get() and set() methods to manipulate form data, and a validate() method to allow enforcement of validation logic on any form data submitted by the user. Where errors are found in validation, an ActionErrors object, encapsulating the collection of ActionMessages (each of which references error messages stored in properties file), is returned (Doray, 2006).
3.2.2.1.3 Action
The Struts Action class acts as a wrapper around the business logic, effectively functioning as the workhorse of the Struts controller. It looks at the data in an ActionForm and decides if to call on business logic in the model to perform the action, or call an ActionForward (Robinson & Finkelstein, 2004).
The typical structure of an Action class is illustrated in Example 3‑6.

[image: image16]
Example 3‑6 – Typical structure for a custom Struts Action class
3.2.2.1.4 ActionMapping

The Struts ActionMapping represents information the Struts controller knows about the mapping of a particular URI to an instance of a particular Action class and the associated ActionForm. Struts ActionMappings are defined by the <action-mappings> element of the struts-config.xml configuration file (Example 3‑7).

[image: image17]
Example 3‑7 – Configuring the Struts ActionMapping (and ActionForward highlighted)
3.2.2.1.5 ActionForward

The Struts ActionForward represents a destination to which the Struts controller might be directed to transfer control as a result of processing activities of an Action class. These destinations are typically views (JSPs) or other Action classes, defined by the struts configuration file. A Struts ActionForward is defined as a <forward> element inside of the <action> element (as highlighted in Example 3‑7).
3.2.2.2 Struts2

Over time, the development of web applications using Struts required greater amount of developer-provided code in implementing and maintaining the MVC pattern. This led to the development of Struts2 – the next generation of Struts (Brown, 2006). Struts2 is based on the WebWork framework; a Java-based open source project developed by OpenSymphony
, and therefore inherits all of WebWork’s characteristic design patterns for improving developer productivity and achieving even greater code simplicity. The result of which is a Struts2 implementation of the MVC pattern without the need for typical Struts ActionServlet, ActionForm, ActionForward, or ActionMapping objects.
[image: image18.png]Controller Model

View

Web browser
displaying ——»f
a page

FilterDispatcher

==l

=y





Figure 3‑7 – The Struts2 implementation of the MVC pattern
3.2.2.2.1 FilterDispatcher

The FilterDispatcher acts as the controller in the Struts2 MVC design pattern and is defined within the web.xml deployment descriptor file.

[image: image19]
Example 3‑8 – Configuring the Struts2 FilterDispatcher

The FilterDispatcher is really a servlet filter that maps URLs of incoming requests to Actions. This mapping is achieved using either the struts.xml configuration file, or zero-configuration Java annotations, or both.

[image: image20]
Example 3‑9 – Configuring a Struts2 Action using struts.xml configuration

Example 3‑10 shows the corresponding zero-configuration annotations for the same XML configured Action.

[image: image21]
Example 3‑10 – Configuring a Struts2 Action using zero-configuration Java annotations
3.2.2.2.2 Interceptors

Struts2 Interceptors are framework provided components intended to handle operations common to most requests. These operations range from simple validation to file uploads, and while they are of significant importance, they do not specifically relate to the action logic of the request. Hence, Struts2 uses Interceptors to both separate and reuse these crosscutting concerns (Brown, Davis & Stanlick, 2008). Struts2 provides a set of preconfigured and ready to use Interceptors in the struts-default.xml configuration file. This XML file can then be extended by struts.xml. Custom Interceptors are also made possible by extending the Interceptor interface.

[image: image22]
Example 3‑11 – Configuring Struts2 Interceptors using struts-default.xml file
3.2.2.2.3 Action

Similarly with Struts, the Action class acts as a wrapper around the business logic. However with Struts2, the Action is simply a POJO (Example 3‑10) and can act as a locus of data transfer. This data is both prepared and executed by the framework where necessary. Accessing the data is possible via direct access to the Value Stack
 by JSTL and other tag libraries.
4 System and Requirements Analysis

It is quite often the case that a new system designed to replace one already existing, fails to avoid the same pitfalls that had subsequently led to the need for a new system in the first place. Hence, the following sections aim to establish the methodology of approach to the project, provide an analysis of the current system, and based on this analysis, establish the requirements of the project at hand.
4.1 Project Methodology

Based on experiences and comparisons of the similarities and differences of past projects, the Dynamic Systems Development Method (DSDM) emerged as the most appropriate project methodology to follow for the successful delivery of this project. DSDM outlines a five-phase project process (Figure 4‑1): Feasibility Study, Business Study, Functional Model Iteration, Design and Build Iteration and finally Implementation. These are preceded by the Pre-Project phase and end with the Post-Project phase (“DSDM Lifecycle,” n.d.), effectively covering every stage in a project’s life-cycle.

[image: image23.png]



Figure 4‑1 – The DSDM development life-cycle
The choice of DSDM as the project methodology is greatly influenced by the governance of each phase of the project development process by a set of business best practice principles (“DSDM,” 2007). These guiding principles are put in place to ensure controlled transition between phases and the delivery of the completed project, or indeed one satisfying the critical functional business needs, both on time and within budget.
4.2 Current State of SUMS

Before setting out the requirements of the new system, it is essential to review the current state of the system in operation.

The Student and Unit Management System (SUMS) is an online system being developed within the University of Portsmouth as a potential replacement of the currently operational Project Units Management System (PUMS) for the Computing and Mathematics Programme Area. The development of SUMS is carried out via smaller modules. As a functional requirement for SUMS, each module is to be designed using the Hibernate and Apache Struts frameworks. Programming is to be carried out using the Java programming language, with data storage achieved through a MySQL relational database system.

With regards to the look and feel of SUMS, there are plans in motion to incorporate OpenSymphony’s SiteMesh web application development framework into the View design process. SiteMesh will provide a standard set of JSP templates upon which web pages will be dynamically built. While these templates are still in development, developers are advised to follow similar page designs as observed within the currently available (SUMS) modules.

Each module is required to share a central database source. A central repository providing all information concerning SUMS is made available via Subversion support within the NetBeans IDE. The onus is still on the developer to ensure individually added branches of code are functional. 
Figure 4‑2 illustrates the current state of the SUMS architecture.

[image: image24.png]



Figure 4‑2 – The current state of SUMS
At this moment in time, the Assessment System remains the only SUMS module currently in use, although it does require further modifications if to introduce Java persistence functionality.
4.3 System Requirements

The system requirements (APPENDIX C – Software Requirements Specification) are documented according to the standards set out by the Institute of Electrical and Electronics Engineers (IEEE)
, for an internet based application. Much of the formal requirements of the system are gathered from the interviews with Dr Jim Briggs. The key objective elicited from these interviews is to provide CRUD
 functionality for SUMS data.
4.3.1 System Actors

Given the elicited objective for the system, it is clear that interaction with the system will be from an Administrator actor. Figure 4‑3 illustrates the Administrator actor and how it fits within the potential SUMS system actors.

The Person and Staff actors are a form of generalisation/specialization intended to define the relationship between the overlapping roles and functions of the underlying system actors.
[image: image25.png]sTUDENT STAFF

ADMINISTRATOR  COORDINATOR ~ SUPERVISOR




Figure 4‑3 – SUMS system actors hierarchy
Another potential actor with the system could be the University of Portsmouth’s recently deployed Jupiter system. Jupiter is the University’s student records system, used to manage a student’s personal and academic details (“Jupiter,” n.d.). With much of the data being used within SUMS already represented (in some form) within Jupiter, it is more than likely that the near future will see an interface created to allow SUMS take advantage of Jupiter’s resources. Until that time comes, any potential data that could be retrieved via Jupiter is expected to be implemented as a Proxy.
4.3.2 Use Cases
After having identified the actors in the system, it is necessary to highlight the sequences of interactions between the actors and the system in relation to achieving a particular goal (Cockburn, 1997). This definition of the sequences of interactions for each actor is referred to as a use case. Typically, use cases fit the bill for the specification of functional requirements, without dealing with the internal structure of the system.
The high-level use cases for the Administrator actor in the system are described in the following sub-sections.
4.3.2.1 Add Student
This refers to the process of adding a new student to the SUMS database. The basic course of action is as follows.
· User inputs details regarding the student
· System verifies that all inputs are valid. If not valid then the user is notified and the use case ends

· System saves student details in database

· System displays details of newly added student
4.3.2.2 Add Staff
This refers to the process of adding a new staff to the SUMS database. The basic course of action is as follows.

· User inputs details regarding the staff

· System verifies that all inputs are valid. If not valid then the user is notified and the use case ends

· System saves staff details in database

· System displays details of newly added staff
4.3.2.3 Add Cohort
This refers to the process of adding a new cohort to the SUMS database. The basic course of action is as follows.

· User inputs details regarding the cohort

· System verifies that all inputs are valid. If not valid then the user is notified and the use case ends

· System saves cohort details in database

· System displays details of newly added cohort

4.3.2.4 Add Course
This refers to the process of adding a new course to the SUMS database. The basic course of action is as follows.

· User inputs details regarding the course

· System verifies that all inputs are valid. If not valid then the user is notified and the use case ends

· System saves course details in database

· System displays details of newly added course

4.3.2.5 Register Course
This refers to the process of specifying what courses are made available in a particular cohort. The basic course of action is as follows.

· System displays details of cohort

· User selects what courses to be included in the cohort from a provided list 
· System verifies course is eligible for inclusion in the cohort
· System saves details of what courses are included in the cohort in the database

· System displays updated details of cohort

4.3.2.6 Add Unit
This refers to the process of adding a new unit to the SUMS database. The basic course of action is as follows.

· User inputs details regarding the unit

· System verifies that all inputs are valid. If not valid then the user is notified and the use case ends

· System saves unit details in database

· System displays details of newly added unit

4.3.2.7 Register Unit
This refers to the process of specifying what units are made available on a specific course in a particular cohort. The basic course of action is as follows.

· System displays details of course registered to a cohort

· User selects what units will be available on the course from a provided list 

· System verifies unit is eligible for availability on the course

· System saves details of what units are available on the course in the database

· System displays updated details of course registered to a cohort
4.3.3 UML Use Case Diagram

The relationship between the system and its actors can be further represented via a graphical notation. This graphical notation is known as a use case diagram (as illustrated in Figure 4‑4). Use case diagrams are defined by the Unified Modelling Language (UML) with system actors represented via stick-figures and the business processes (use cases) represented via ovals.
[image: image26.png]ADMIKISTRATOR

Manage
Cahort

Manage
Caurse

oo™

i,

itz

Sk

oo™

Sk

Manage
Persan

Manage
Cohart Caurse

Manage
Course Unit

SUMS - Maintain System





Figure 4‑4 – UML use case diagram
The use case diagram essentially provides a high-level view of the functionality and business processes available to each actor within the system, without introducing the usual confusion associated with the presence of technical jargon, as in other forms of documentation.
4.3.4 Further Requirements

The system should also provide a means for the user to add milestones for a particular unit registered on a course. As a low priority requirement, the system should also provide the user a means to duplicate these milestones unto another unit registered on a course and (optionally) have the relevant dates adjusted.
5 Design

The MVC design pattern ensures that the design of the SUMS – Maintain web application is split up into layers, each functionally consistent, and therefore independent of one another. The following sections will explore the layers resulting from the use of the MVC design pattern, analyzing the decisions and methods used in order to materialize the project artefact.
5.1 The Persistence Tier
The persistence tier, as the name implies, is designed to handle all persistence actions. Central to the design of the persistence layer is the Java Persistence API. The Java Persistence API is responsible for the creation of persistent objects as well as handling the save, update, and removal operations on these persistent objects within a relational database. These persistent objects are typically Java classes, or POJOs, designed based on their underlying structure as tables within a relational database.
The design decisions at this point were expected to affect the fabrication of the system Data and Object Models, and hence, explicitly describe the structure of the resulting database tables, and the relational mapping to their equivalently created Java classes. These decisions were necessary if to realize the system’s persistence layer.

5.1.1 The Data Model
Taking into account the system requirements, as elicited in Chapter 4, this section analyses the design issues relating to the representation of data, as tables within a relational database.
Prior to establishing the tables to be created in relation to the system, it is essential to identify the current tables in the SUMS database architecture which will be utilized by the system. The design of the SUMS database architecture is such that the Student and Staff tables have been created to hold relevant details on student and staff entities, respectively. A third table, Person, has also been created to hold personal information applicable to both student and staff entities. As both student and staff entities can have multiple e-mail accounts linked to them, a separate table, Person_Email, has also been created to hold the relevant information pertaining to these email accounts. The relationship between these tables is illustrated by the Entity-Relationship diagram (E-R diagram) in Figure 5‑1.
[image: image27.png]Person

PK

Person ID

User_Name
P
First_Name
Surmame

Inaciive.

Person_Email

3

E Mail D

Person_ID
E il Add
E_Mai_Suspendedt

Student Safl
PK | Student ID PK_|Staff No
FK1 |Person_ID. FK1 |Person_iD

Hemis_No

Dogres_Stream

Final_Year





Figure 5‑1 – E-R diagram showing relevant SUMS tables and relationships
A Cohort table is also created to hold information regarding an academic group as defined by students, courses and units. A Course table is created to hold information regarding courses, while a Unit table holds information pertaining to units. The cohort grouping means that the design of the Unit table currently within the SUMS database architecture is unlikely to satisfy system requirements and will need to be redesigned. The redesigned Unit table now holds more specialized information regarding units, with a Unit_Instance table included to hold details of units registered onto a course. Similarly, a Course table is designed to hold more specialized information regarding courses, with a Course_Instance table included to hold details of courses registered unto a cohort. Ultimately, this all means that a logical reference to a unit references an entry in the Unit_Instance table, and likewise, a logical reference to a course references an entry in the Course_Instance table. This ensures that there is a better reflection of what cohort group a referred unit or course belongs.
The relationship between the database tables is illustrated by Figure 5‑2
[image: image28.png]Course Instance

Unit Instance

PK | Unit Instance Jd

PK | Cowrse Instance Id FL| Unictd
FKL| CohortId FK2 | Course Instance Id
FK2 | Courseld Academic_Year
Course_Leader Semester_Run
¥ Mandatory
Cohort Course. Unit
PK | CohortJd PK | Course Id PK | UnitJd
Cohart_Description Course_Code Unit_Cade
Project_Start_Date Course_Name Unit_Name

Project End_Date
Cohort_Closed

‘Academic_Vr_First Run
Academic Vr_Last Run





Figure 5‑2 – E-R diagram showing relevant SUMS – Maintain system tables and relationships
5.1.2 The Object Model
In order to represent the data to be used within the system, Java classes are designed around the database tables created by the Object Model. This ensures that the structure of the Java classes, in relation to their corresponding tables within the database, is clearly established.
The majority of Java classes created are a direct transformation of the Data Model, as described in Section 5.1.1 above. Hence, for each entity in the Data Model, a column is represented as an attribute within the equivalent Java class of the Object Model. Ignoring foreign key columns, this is clearly the case with either a one-to-one or one-to-many relationship between entities.
Figure 5‑3 shows a UML class diagram illustrating the Java classes derived from the Data Model in Figure 5‑2.
[image: image29.png]Unit

Unianes i oD
: I
i Bieiml e st
iR academicifFirstRun: Date
vt o academicirlastRun: Date
isMandatory: Boolean 0.4 cademiciil
o
Y T
0| courselnsld: BigDecimal  0-*
oo
Coorts e
comarDescnton, ting o O Souca sgbecral
projectstartDate: Date of OF| courseCade: String
projectEndDate: Date courseName: String
EomarClses Bootenn





Figure 5‑3 – UML class diagram

The job of mapping the many relationships between the Java classes in the Object Model will be handled by the Java Persistence API. In cases where a bi-directional many-to-many relationship develops among entities, the Java Persistence API can create and manage an intermediate class
 either implicitly or explicitly. This choice is dependent on whether the intermediate class will contain attributes other than foreign keys. If the intermediate class is found to have attributes other than foreign keys, the Java Persistence API manages the intermediate class as an implicit concrete Java class, whereas an intermediate class with only foreign keys is handled transparently with no concrete Java class need provided.
5.2 The Presentation Tier
Much of the user interaction to take place within the system is achieved via the application’s presentation tier. It is therefore essential to employ effective design principles capable of providing unprecedented stability and consistency throughout the presentation layer. For this reason, the presentation layer is designed via the use of sitemaps and wireframes. These “good design” principles ensure that the fundamental problems of complexity and loss of context-specification are not experienced in the long run, particularly when integration into SUMS is completed.
The use of sitemaps and wireframes in the design of the presentation layer builds on the separation and specialization of concerns, previously introduced by the use of the MVC design pattern, and enhances the usability experience for system users, while also providing an insight into the SUMS – Maintain system information architecture.
5.2.1 Blueprints
A design solution was required to illustrate the overall structure and hierarchy of the presentation tier. This is accomplished through the use of a sitemap. The sitemap is designed around the use cases described in Section 4.3.2. It provides a framework upon which to lay out the information architecture blueprint, and establish website navigation patterns.
The sitemap is illustrated in Figure 5‑4.

[image: image30.png]] Add student

H student search

Lo samemien

[ s starr

] statf search

L { et patete starr

H A canort

H canart search

rtDetalls

Administrator | {—|

SUMS Home Page.

et/ Detete cohort

L {dd/ Remove Courses

[ course searcn

[ it Detete Course

Add | Remave Units

¥ ey
Womesaran
Symaric Page | 1 ConReaiied |





Figure 5‑4 – SUMS – Maintain system sitemap

5.2.2 Schematics
A design solution to convey the general structure and content requirements for each page within the information architecture is accomplished through the use of Web page wireframes. Wireframes are used as mere skeletal outlines, offering a basic visual guide of the suggested schematics for each individual page making up the information architecture. Building on the navigational scenarios defined through the use of sitemaps, wireframes provide a framework upon which to maintain the flow of specific logic and business functions, and uphold the concepts of simplicity, consistency, and relevance, across the entire site.
SUMS presents an interface, referred to as mySUMS, designed using navigational layouts or areas. This structural layout employs a structure incorporating top and left navigational areas to provide both depth- and breadth-emphasized site hierarchies. The main area is designed to hold JSPs relating to the various SUMS sub-projects Figure 5‑5 illustrates the default mySUMS layout showing navigational structure.

[image: image31.png]Header Area

Optional Log I, Location Information

Left Area

Main Area

Footer Area





Figure 5‑5 – mySUMS navigational wireframe
5.3 The Business Tier
The business tier is designed to hide complex logic and functions from the client. To achieve this, the design process involves the use of the Session Façade and Business Delegate design patterns. These design patterns further enforce the MVC best practices and proved necessary in decoupling the business tier from the persistence and presentation tiers during the process of implementation.
5.3.1 Session Façade Pattern

Based on the original Façade design pattern, the Session Façade pattern, when applied, uses EJB session beans as a façade to encapsulate the complexities of interactions between business logic and business data. In so doing, a coarse-grained service access layer exposing only the required interfaces to clients is provided.
A UML class diagram representing the Session Façade pattern is illustrated in Figure 5‑6.
[image: image32.png]Client

accesses

<<8esSIONEJB>> | gocesses

BusinessComponent

SessionFacade

e

TF

1. 1.

ApplicationService

BusinessObject

DatahccessObject





Figure 5‑6 – Session Façade class diagram [Alur, Crupi & Malks, 2003]
Designing the Session Façade involved the aggregation of a group of related interactions, as specified by the use cases described in Section 4.3.2, into a single EJB session bean (representing a Session Façade). This EJB session bean is then exposed to a client as the only possible means to gain access to Application Services and Business Objects which are required. This abstraction will therefore ensure the MVC design pattern is enforced outright, by keeping tight coupling between the Presentation and Business tiers to a minimum.
Figure 5‑7 shows a sequence diagram illustrating the interactions involved in the fulfilment of a client’s request, within an application employing the Session Façade pattern.
[image: image33.png]Cliont <<EJBSession>| [AppiicationSenvice <<EJBEniy=> <<EJBEnity-> DatahccessObject
SessionFacade BusinessObject1 | |BusinessObject?

T T T T
| | | |
| invoke | | 1

- invoke
invoke E]

I
I
|
|
invake | |
|
|
|

Bl invoke

|
|
|
|
|
|
invoke |

invoke |

invoke
invoke
invoke EJ

¥
-1

v
3

invoke

B get data

Process

o





Figure 5‑7 – Session Façade sequence diagram [Alur et al., 2003]

5.3.2 Business Delegate Pattern

The Business Delegate pattern involved the use of plain Java classes (POJOs) to encapsulate the implementation details of, and access to Application Services and Business Objects within the EJB architecture. 
A UML class diagram representing the Business Delegate pattern is illustrated in Figure 5‑8.
[image: image34.png]sccosses, | <00 | auiesses _[BusiessSvice
usmesadeeute
. I
]
o ;
uses | tooksup
. | [ |[oRssenies
<<Singleton>> | _ _ _ _J
e





Figure 5‑8 – Business Delegate class diagram [Alur et al., 2001]

Figure 5‑9 shows a sequence diagram illustrating the typical interactions in the Business Delegate pattern.
[image: image35.png]SenviceLocator|  [BusinessSenvice

T oae |BuSiessDelegate
L =

T T
I I
| |
getsenice | I
|
[ —— ]
| invoke | |
=Ly invake | |
I 0
T - I i
noke el ke | |
41\
I
getlD L
=y et | gethandie !
create Handle
i N
convert Handle to [D
e |





Figure 5‑9 – Business Delegate sequence diagram [Alur et al., 2003]
6 Implementation

The successful implementation of the system was highly dependent on following the design guidelines previously set out. The following sections will explore how the design decisions and methods were applied in realising a cohesive implementation of the application’s layers.
6.1 Implementing the Persistence Tier

The system is to be implemented on servers provided by the University of Portsmouth. However, for the process of development, a server running on a conventional laptop was used. 
Table 6‑1 provides an overview on the hardware specification of the development machine.
	Model
	Sony VAIO VGN-FE31Z

	Central Processing Unit
	Intel® Core™ 2 Duo T5600, 1.83 GHz

	Memory
	2 GB (2 x 1024 MB) DDR2 SDRAM, 533 MHz

	Hard Disk Drive
	200 GB

	Screen Resolution
	15.4” WXGA (1280 x 800), Widescreen

	Graphics Processor Unit
	NVIDIA® GeForce® 7600, 128 MB VRAM

	Operating System
	Microsoft® Windows® XP Professional Edition


Table 6‑1 – Development hardware specification
The University servers are expected to provide an Oracle Database Server as the Relational Database Management System (RDBMS) upon which SUMS will run.However, in accordance with the system requirements, a MySQL Database Server is used to implement the Data Model. System requirements also require that the NetBeans Integrated Development Environment (IDE) framework is used in implementing the Object Model.
The reasons communicated for the choice of both MySQL and NetBeans are their ease of use, flexibility, robustness, ready availability (open-source), and comprehensive support provisions.

There appeared to be an apparent lack of communication between NetBeans and MySQL when implementing the Object Model. POJOs to be used to implement the Object Model were unable to be generated from the underlying database tables in the Data Model. The problem, it seemed, was that NetBeans was unable to communicate with the MySQL database using the “root” login credentials provided (which were initially created during the MySQL install process). The solution was to use the MySQL Administrator Tool provided with the MySQL GUI Tools Bundle. This allowed a new user account to be easily set up with the appropriate schema privileges on the SUMS database schema. The login credentials for the new user were then applied within NetBeans.
The MySQL Administrator Tool also allowed for a visual approach to the Data Model implementation process. Figure 6‑1 illustrates the representation of a Cohort entity within the MySQL database.
[image: image36.png]MysQL Table Ecitor

Comment: InoDB free: 3072 K8

TateNome:[sor Databose: [

Columns and ndices | Table Optians | Advanced Options

Column Name Dataype W W Feos DefautVaue  Camment
7 cohartid % BIGINT(2) v [/ UNSIGNED [] ZERDFILL

G cohot descrption | 4, VARCHAR(SD) 1 Biery
O project_star_dste 7 DATE

< pioiect_end dete =3 DATE
G cohorcsed 5 TINVINTIT) [] UNSIGNED [] ZERDFILL O

ncices | Foreign Keys | Column Detalls

Indes Setings
0 PRIMARY Indes Cobarns __(LJse Dreg'nDrc]

cohor_id

Inclex Type:





Figure 6‑1 – Implementing the Cohort entity within the SUMS database
Employing the principles surrounding the Java EE and EJB technologies, (Section 3.1), Java classes making up the Object Model are implemented as a transformation of the underlying tables making up the Data Model.
Example 6‑1 illustrates the structure outline for the Cohort Java class (POJO) now created via NetBeans. The Cohort Java class is based on the Cohort entity available within the SUMS database.

[image: image37]
Example 6‑1 – Implementing a Cohort POJO
It is assumed that on full implementation of the SUMS – Maintain system, a migration unto the Oracle RDBMS will occur concurrently with the integration into SUMS. With the system being built with technologies supporting the MVC pattern for separation of concerns, there are no foreseen problems that could occur with this migration. By switching the JDBC and JNDI service name parameters, the POJOs created will remain functional, as long as the data within the Data Model does not change during migration.

The framework libraries employed in implementing the persistence tier are listed below.
Struts 2.0.11

· commons-beanutils-1.6.jar
· commons-logging-1.0.4.jar
· freemarker-2.3.8.jar
· ognl-2.6.11.jar
· struts2-core-2.0.11.1.jar
· xwork-2.0.4.jar
Hibernate 3.2

· hibernate3.jar

· antlr-2.7.6.jar

· asm-attrs.jar

· asm.jar

· c3p0-0.9.1.jar

· cgilib-2.1.3.jar

· commons-collections-2.1.1.jar

· commons-logging.1.0.4.jar

· concurrent-1.3.2.jar

· dom4j-1.6.1.jar

· ehcache-1.2.3.jar

· javassist.jar

· log4j-1.2.11.jar

Hibernate EntityMananger 3.3.2

· hibernate-entitymanager.jar

· hibernate-annotations.jar

· hibernate-commons-annotations.jar

6.2 Implementing the Business Tier
Implementing the Session Façade pattern involved the encapsulation of workflow tasks related to an entity class into a single Java class. This Java class, referred to as a Service class, is then exposed to a Business Delegate when a client requests access to the business services.

Example 6‑2 shows an implementation using the Session Façade pattern where workflow tasks related to the Cohort entity bean is encapsulated in CohortService.


[image: image38]
Example 6‑2 – Implementing the Session Façade

The Struts2 Action classes are central to implementing the Business Delegate pattern. The Action classes are implemented as simple POJOs within the web application and have an added advantage with the Struts2 framework allowing Action classes to function as a locus for data transfer. Hence, the Action classes are capable of exposing the client-side abstraction of the Session Façade. These Action classes are therefore implemented for use by a JSP or servlet, as an access point to the services represented by the Session Façade.


[image: image39]
Example 6‑3 – Implementing the Business Delegate

6.3 Implementing the Presentation Tier
The presentation tier is implemented using a combination of JSPs, JSTL and Struts2 tag libraries, all coupled together using the recommended mySUMS site structure. The JSP implementations of the presentation tier are housed inside the mySUMS main area.
The JSPs are made up of form elements, such as text fields, labels, checkboxes, etc. These form elements are provided for by the Struts2 tag library. The Struts2 tag library contains Generic Control and Data Tags, to control the flow of execution as the JSP page renders, and User Interface Form and Non-Form Tags, to display data in rich and reusable HTML. The <s:form action="someAction"/> tag in particular is used to access the services presented by someAction within the business tier.

Struts2 tags are actually abstractions of conventional HTML reusable code designed to increase productivity, by reducing lines of code, and provide a cleaner easier read.
Table 6‑2 illustrates how a text field or submit button is represented using Struts2 tags, and the result when rendered in HTML.

	Struts2 Tag
	Rendered HTML

	<s:textfield id="firstName"
             name="firstName"
             label="First Name">
	<label for="firstName">First Name</label>

<input type="text" name="firstName"
       id="firstName">

	<s:submit type="button" value="save"/>
	<button type="submit" value="Submit">

  Save 
</button>


Table 6‑2 – Struts2 tags and resulting HTML code
Style sheets are employed in ensuring consistency in the style and formatting of page elements such as text, buttons and links. These page elements are reused throughout the entire web application’s interface and therefore, further enhance the uniformity of the site structure. Ultimately the JSPs are clean and perform the task for which they are created.
Figure 6‑2 shows a JSP implementation for the cohort form.

[image: image40.png]D Create Cohort - Moilla Firefox

Eile Edit Miew History Bookmarks ool Help

@ D@ O Q Ervmoorommmns oot

B Geting statea B Latest Headlines

Create Cohort

Description:
Closed: [1

Bact to Home

Dane





Figure 6‑2 – Web browser displaying cohortForm.jsp
7 Testing and Evaluation

With design and implementation completed, the next phase was to test the application. To do so, the JUnit Java unit testing framework is employed. JUnit allows for unit testing on the Java classes. With the Struts2 Action classes now provided as POJOs, unit testing was considered feasible using the JUnit framework. The following sections provide an overview of the test carried out and based on the results, evaluates the system against the initial requirements.
7.1 Testing

The JUnit framework provided a means to set-up fast and easy tests aimed at assessing the deliverance of functionality requirements. These tests are defined, as methods, within a Java JUnit Test class. Test classes were created for each Struts2 Action to be tested.
Typically, the tests within the Test class were designed to validate an object’s creation, referencing and dereferencing, and equality at runtime. In fulfilling their design, the tests utilized a combination of assertTrue(), assertFalse(), assertSame(), assertNotSame(), assertNull(), assertNotNull() and assertEquals() functions from the JUnit API. These functions simply evaluated a condition; including objects comparison, and determined if the condition is satisfied. All of these tests were essential prior to testing the persistent method calls within the Action itself.
Example 7‑1 shows how the JUnit framework is utilized in performing unit tests on the CohortAction.


[image: image41]
Example 7‑1 – Unit testing the CohortAction

Figure 7‑1 shows the results of all test carried out on the CohortAction.
[image: image42.png]At Test Resuts

T 4 tests pased, 4 ests covsed an ror
S sums.acton,CohortAcionTest FAILED

°

06000600

testCohort passed (0.0325)
testCohorthction passed (0.05)
testPrepare passed (0.05)
testGetservice passed (0.05)
testDoSave caused an ERROR (0.3255)
testDoSearch caused an ERROR (0.145)
testDolist caused an ERROR (0.125 5)
testDoDelete caused an ERROR (0.1415)




Figure 7‑1 – JUnit test results for CohortActionTest
For the purposes of unit testing, the JUnit 4 framework was used within the NetBeans environment.
7.2 Evaluation

The failed tests concerned the CRUD functionality requirement of the system. The reason for the tests’ failure seems to be down to with an issue with the EntityManagerFactory object and the Tomcat application server being unable to communicate with the MySQL database. This issue could not be resolved before the deadline for delivery of the application. However, the system does attend to a majority of the functionality required of the system and in keeping with the fundamentals of the DSDM methodology, it could be agreed that at least key functionality requirements have been met.

Furthermore, at the business tier, another approach to the design of the Service classes could include a super class containing all of the CRUD functionality. Sub classes could then implement this method through a process of supplying the dot Class (“.Class”) attribute at runtime to get parameterized values. This process is technically advanced and hence, is only suggested if the generalization/specialization of Java classes implemented is considered too feeble.

Also, with regards to testing, the JWebUnit framework could be explored as this provides a means for unit testing the JSP forms within the persistence tier. The page and form elements expected within a JSP or HTML page can be tested for their presence within a web browser, tested for user interactivity, such as button clicks and text inputs, and even have the Action mappings tested.
8 Conclusion

Over the course of designing and implementing the system, a number of new technologies, principles and concepts have come up. This section provides the developer’s take on these technologies, principles and concepts.
8.1 Learning Outcomes
This project has given a broader knowledge on the subject of web development. There is a greater sense of appreciation for the change from simple linked web pages to enterprise solutions employing interesting technologies such as Java EE and Struts. Design patterns, such as MVC, Session Façade and Business Delegate, have also gone a long way in corroborating assurances of separation delivering simplification.

8.2 Project Result
The aim of the project was to design and implement a web-based system for the maintenance of the SUMS back-end. While the system is by no means a complete solution, a good number of functionality has been introduced for general SUMS back-end administrative uses. Development of the system will continue even after project delivery to the client. Hopefully, a complete solution will be realised soon enough.
Bibliography
Alur, D., Crupi, J., & Malks, D. (2003). Core J2EE Patterns (2nd ed.). Upper Saddle River: Prentice Hall PTR.

Bergsten, H. (2003). JavaServer Pages (3rd ed.). Farnham: O’Reilly.

Biswas, R., & Ort, E. (2006). The Java Persistence API – A Simpler Programming Model for Entity Persistence. Retrieved April 7, 2007, from Sun Developer Network web site:
 http://java.sun.com/developer/technicalArticles/J2EE/jpa/
Brown, D., Davis, C., & Stanlick, S. (2008). Struts 2 in Action. Greenwich: Manning Publications.

Brown, D. (2006, October 24). My History of Struts 2. Retrieved March 20, 2008, from O’Reilly ONJava Blog web site:
 http://www.oreillynet.com/onjava/blog/2006/10/my_history_of_struts_2.html
Burke, B., & Monson-Haefel, R. (2006). Enterprise JavaBeans 3.0 (5th ed.). Farnham: O’Reilly.

Carnell, J., & Harrop, R. (2006). Pro Apache Struts with Ajax. Berkeley: APress.

Cavaness, C., & Keeton, B. (2001). Using Enterprise JavaBeans 2.0 (Special ed.). Indianapolis: Que.
Cockburn, A. (1997). Structuring Use Cases with Goals. Journal of Object-Oriented Programming .

Doray, A. (2006). Beginning Apache Struts: from Novice to Professional. Berkeley: APress.

DSDM – Dynamic System Development Method (2007, April 25). In Wikipedia, The Free Encyclopedia. Retrieved April 25, 2007, from Wikipedia web site: http://en.wikipedia.org/wiki/DSDM
DSDM Lifecycle, The (n.d.). Retrieved April 10, 2007, from DSDM Consortium web site: http://na.dsdm.org/en/about/lifecycle.asp
Falkner, J., & Jones, K. W. (2003). Servlets and JavaServer Pages: The J2EE Technology Web Tier. Boston: Addison-Wesley.

Farley, J., Crawford, W., & Malani, P. (2005). Java Enterprise in a Nutshell (3rd ed.). Farnham: O’Reilly.

Haan, P. d., Lavandowska, L., Panduranga, S. N., & Perrumal, K. (2004). Beginning JSP 2: From Novice to Professional. Berkeley: APress.
Heider, S. (2007). Basics of the Java Persistence API – Understanding the Entity Manager. Retrieved April 7, 2007, from SAP Developer Network web site: https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/60216821-e789-2910-109b-b6c6e02dce87 (PDF)

Hunter, J. (1998). Java Servlet Programming. Sebastopol: O'Reilly.

Husted, T., Dumoulin, C., Franciscus, G., & Winterfeldt, D. (2002). Struts in Action. Greenwich: Manning.

Java Persistence API (2007, April 6). In Wikipedia, The Free Encyclopedia. Retrieved April 7, 2007, from Wikipedia web site:
 http://en.wikipedia.org/wiki/Java_Persistence_API
Jendrock, E., Ball, J., Carson, D., Evans, I., Fordin, S., & Haase, K. (2006). The Java EE 5 Tutorial (3rd ed.). Harlow: Addison-Wesley.
Jupiter Student Records. (n.d.). Retrieved April 10, 2007, from University of Portsmouth web site:
 http://www.port.ac.uk/departments/services/businesssupport/JupiterStudentRecords/
Keith, M., & Schincariol, M. (2006). Pro EJB 3 – Java Persistence API. Berkley: APress.

NCSA. (n.d.). CGI – Common Gateway Interface. Retrieved April 5, 2007, from National Centre for Supercomputing Applications HTTPd web site: http://hoohoo.ncsa.uiuc.edu/cgi/intro.html
Pekowsky, L. (2003). JavaServer Pages (2nd ed.). Harlow: Addison-Wesley.
Powel, S. J. (2005). An Online Project Marking System for the University of Portsmouth. School of Computing, University of Portsmouth.

Robinson, M., & Finkelstein, E. (2004). Jakarta Struts for Dummies. City: For Dummies.
Ruiz, J. (2006). An Online Project Allocation System for the University of Portsmouth. School of Computing, University of Portsmouth.

Singh, I., Stearns, B., Johnson, M., & the Enterprise Team. (2002). Designing Enterprise Applications with the J2EE Platform (2nd ed.). Retrieved April 5, 2007, from Sun Developer Network web site:
 http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/book.pdf
Sriganesh, R. P., Brose, G., & Silverman, M. (2006). Mastering Enterprise JavaBeans 3.0. New York: Wiley.
Stearns, J., Chinnichi, R., & Sahoo, S. K. (2006). Update: An Introduction to the Java EE 5 Platform. Retrieved April 5, 2007, from Sun Developer Network web site: http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/
World Wide Web Project, The. (1992). Retrieved April 5, 2007, from World Wide Web Consortium web site: http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
Your First Cup: An Introduction to the Java EE Platform. (2006). Retrieved April 5, 2007, from Sun Developer Network web site:
 http://java.sun.com/javaee/5/docs/firstcup/doc/firstcup.pdf

APPENDIX A – Project Specification Document
[image: image43.jpg]University of
Portsmouth




University of Portsmouth School of Computing

Student and Unit Management System – Maintain System
Project Specification Document
Version 1.0
Project Specification Document

1. Basic details

	Student name:
	Udeme Michael Ekong

	Draft project title:
	SUMS – Maintain System

	Course:
	Bsc(Hons) Software Engineering

	Client organisation:
	University of Portsmouth

	Client contact name:
	Dr Jim Briggs

	Project supervisor:
	Dr Jim Briggs


2. Outline of the project environment and problem to be solved

The project will involve a collaborative effort with Dr Jim Briggs of the University of Portsmouth. Dr Jim Briggs is a principal lecturer in the area of web programming and development and has been put in charge of delivering a web based system designed within the Java environment to replace the current system in use by students at the University for managing the project units and tasks or milestones for the final year. The system is therefore intended to be the solution to the University’s need for an enterprise strength framework to handle the complexities behind project unit management. It will also be required to provide greater user friendliness and accessibility as wells as adequate allowance for scalability and flexibility. Due to the size of the system, the core functionalities were divided into modules and the project will involve developing the module to handle the process of project submission.
3. Project aim and objectives

The project aims to deliver a working module to allow administrative staff to perform operations on the SUMS back-end. The module will also be required to seamlessly integrate and interact with previously developed modules of the unit management system.

The objectives towards meeting this aim are:

· Initial research into the current system which is to be replaced, the modules for the system currently in development which are available and also into the technology which will be in use for development purposes.

· Produce an accurate requirements specification report prior to commencement of the project based on communication with the client.

· Design a solution that meets the requirements.

· Implement the proposed plans with frequent demonstrations to the client showing development progress and validation on requirements specification.

· Thorough testing and evaluation of the final project artefact.

· Delivery of a functional artefact which meets the client’s requirements.

· Deliver a comprehensive report on the project which identifies all key steps or decisions made and their impact and furthermore, provides objective arguments as to the pros and cons of my choices over other possible alternatives.
4. Project deliverables

Upon completion of the project I intend to deliver a standalone version of the SUMS – Maintain system module.

I will also be delivering the project report. It will be a comprehensive report covering key aspects of the project such as the lifecycle and methodology used and the reasoning behind the decisions and process of execution of all stages of development of the project.

Support documentation such as the requirements specification, design plan, source code and test plans will also be provided.

5. Project constraints

· Time – Requires at least 300 hours to complete

· Resources – Project requires interaction with other modules which might or might not be working.

6. Project approach

I decided upon DSDM (Dynamic System Development Method) as my project methodology because its guiding principles will ensure that I manage my project thoroughly from start to finish.

DSDM requires that I perform an initial study concerning the project. This study will involve investigating the system to be replaced, examining any aspects of the new system which are readily available and researching the tools and technology which will be used for development within the project environment.

DSDM then requires that my next step involve requirements gathering and specification which is to be presented to the client. Once an approval has being received, I will then proceed to the design and development phase of the project. Finally, I would undergo the implementation and evaluation phase of the project.

7. Facilities and resources

In order to complete the project and achieve its aim I will need access to the program code for the previously developed modules which I will be required to integrate with and will also require access to the shared database.

In terms of software resources, I will be using the open source NetBeans platform developed by Sun Microsystems for the actual Java programming and will probably be performing database modifications using the MySQL Database Management System. As these resources are all available as open source software, it is readily accessible and will cost nothing.

8. Log of risks

Quality
I will need to manage the risk of quality decrease associated with projects of this sort and will therefore be taking steps to ensure the project is of generally high quality for its duration.

Performance
I will need to take into consideration the different hardware specifications of the users likely to use the project deliverable and therefore take steps to ensure a generally high performance in all situations.

Maintenance
I will need to take into consideration the likely possibility of someone else handling the maintenance aspect of the project once development is completed and will therefore be taking steps to ensure the process is straightforward and easy.

Dependency
As there are different modules being developed simultaneously along with my project, there is the likely possibility that I might need to interact with these modules during development and this poses a risk as I am unable to influence the quality of these modules or even the time at which they are made available.

9. Starting point for research

· Research into currently available SUMS system modules.

· Familiarisation with the NetBeans IDE.

· Investigative research and analysis of other available coursework submission systems.

· Books for background research into Struts, Hibernate and Java in general:

· Sierra, Kathy and B. Bates. (2005). Head First Java. 2nd Edition. Farnham: O’Reilly.

· Basham, Bryan, K. Sierra and B. Bates. (2004). Head First Servlets and JSP. Farnham: O’Reilly.

· Husted, Ted N. (2002). Struts in Action: A Practical Guide to the Leading Java Web Framework. London: Manning.

· King, Gavin and C. Bauer. (2004). Hibernate in Action. London: Manning.

· Brown, Larry and M. Hall. (2005). Core Servlets and JavaServer Pages. 2nd Edition. New Jersey: Prentice Hall PTR.

· Perry, Bruce W. (2004). Java Servlet & JSP Cookbook. Farnham: O’Reilly.

· Siggelkow, Bill (2005). Jakarta Struts Cookbook. Farnham: O’Reilly.

10. Breakdown of tasks

For the project, I’ve decided to build the application systematically based on the most obvious development plan, merging any changes as I go along. The development plan which I have identified involves:

· Capture and validation of the structure of the new database tables

· Creation of Java persistent entities matching the SUMS database tables

· Creation of JSP and HTML pages

· Creation of Struts Action classes and appropriate configuration files

11. Project plan

See attached.

12. Legal, ethical, professional, social issues

The major issue concerning the project would be the handling of user authentication and information either provided or displayed. This will most likely be handled via http cookies and therefore I will be required to provide safety and security to ensure the data provided by the user is not exploited. There is also the likely possibility that this process is handled in a previously developed module and all I need to do is extend the functionality unto my module.

Signatures

	
	Signature:
	Date:

	Student
	
	

	Client
	
	

	Project supervisor
	
	


APPENDIX B – Project Plan
[image: image44.png]sk Name:

Duration

o1 0ct 07 [220et 07 [12Nov 07 (03 Dec 07 [24 Dec 07 [14 Jan 08 [0 Feb 08 [25Feb 08 [17 Mar 08 [07 Apr08 [28 #pr 08 15 May 08
sIwm T iw [T [Fls[s[m[T[w[T[F[s[s[wm[rT[w[7|[Fls]s[wm [T [w[T[F[s]s[m][T]
1 pre-Project Phase 5 days
2| Projectitaton Documert Gdays, 26 0ct 07 (g 02 Hovf
3| Literature Review 15 days
0 Research adays, 26 0ct 07
5 Review 7days, oTllov 07 15 ov 07
& Proiect Life-Cycle Phase o days
7| Feasiity Sty 3days, 16 llow 07,20 llov 07
G | Business Stuly 3days, 21 lov 0T & 23 low 07
| Functional Model Reration 21 days
0 Resuirements Anslysis 2days, 26Mlov'07 @27 lov 07
g Design adays, 28 low 07 g, 03 Dec 07
2 nplenertation 7 days 04Dec 07
E Consoldition adays, 13Dec 07 (5 Dec 07
@ FunctionalModel Testng adays, 19Dec 0T G 24Dec 07
15| Design and Build Reration 20 days
s Specification Analysis 2days, 25Dec 07 26 Dec 07
E End Lser Testing 4days, o7 Jan "0
s Design Protctype Review 7days, 1.Jan 08 21 5an 0
20| implementation 20days
2 System itegraton 103 22 Jan'08
E User Traiing Sdays, 05Feb 08 1 Feb 08
] Business Review Sdays, 12Feb 08 18 Feb 08
24 PostProject Phase Tdays?
25| Martenance 7 days? 19Feb 00 G 27 Feb 08
25 project Report a0 cays 20Feb ) ) 23 Avr 18
27 Project Suamission 0days| & 02May 08






APPENDIX C – Software Requirements Specification
[image: image45.jpg]University of
Portsmouth




University of Portsmouth School of Computing

Student and Unit Management System – Maintain System
Requirements Specification

Version 1.0
1 Introduction

1.1 Purpose

This document aims to capture the requirements of the SUMS – Maintain System, primarily the software requirements and description of functionality.

This requirements specification will be the basis upon which the system will be designed and implemented.

1.2 Scope

The University of Portsmouth’s School of Computing (SoC) maintains a final year project unit management system called Project Units Management System (PUMS). PUMS is used throughout SoC for tracking the progress of a student’s final year project from initial project choices through project approval, supervisor and moderator allocation, project milestones, and up until the date of submission. PUMS is basically a series of linked web pages written using the HTTP and CGI protocols and runs in a web browser connected to the internet.

The Student and Unit Management System is currently being developed to supersede PUMS. The development of SUMS is carried out via smaller modules. Each module will be a web-based enterprise application written in Java. Each module will provide a web application using Apache Struts and Hibernate, two Java Persistence API (JPA) frameworks. The Struts framework allows for the clean separation of the model from the view and controller, while Hibernate maps the model (actual Java classes) to tables in a relational database.

The SUMS – Maintain System is a module of SUMS required to handle the general administrative actions to be carried out on data stored within SUMS.
1.3 Glossary

	Term
	Definition

	API
	Application Programming Interface

	CGI
	Common Gateway Interface – Interface between external programs and a web server.

	Controller
	Java Class instance that passes information between the view and model. Usually a Java Servlet.

	Flat file
	Computer file containing data records stored sequentially, with each field instance separated by a delimiter.

	HTML
	Hypertext Markup Language.

	HTTP
	Hypertext Transfer Protocol – Internet standard for data exchange between web server and web browser.

	HTTPS
	A secure version of the HTTP protocol.

	IDE
	Integrated Development Environment

	IEEE
	The Institute of Electrical and Electronics Engineers.

	Java EE
	Java Platform, Enterprise Edition.

	JPA
	Java Persistence API

	JSP
	JavaServer Pages

	Middleware
	Software that connects applications through the network interaction enabling services it provides.

	Model
	Application logic that interacts with a relational database.

	PUMS
	The Project Units Management System.

	SoC
	The University of Portsmouth’s School of Computing.

	SUMS
	The Student and Unit Management System.

	UoP
	The University of Portsmouth.

	View
	HTML pages presented to the client.


1.4 References

Briggs, J. (2007). SUMS Documentation. Retrieved January 7, 2008, from SUMS web site: http://userweb.port.ac.uk/~briggsj/jimapp/SUMS/index.htm
Sponsor, S., (1998). IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications. New York: Institute of Electrical and Electronics Engineers.
1.5 Document Control

Version:
1.0

Date:
15th January 2008

Principals:
Dr. Jim Briggs: Head of Development, Student and Units Management System

Author:
Udeme Ekong: Lead Designer, SUMS – Maintain System

Organization:
University of Portsmouth School of Computing
2 Overall Description

2.1 Product Perspective

The SUMS – Maintain System is a web-based application for the performance of general administrative actions required in SUMS. The SUMS – Maintain System will work with data stored in the central SUMS database. The SUMS – Maintain System will be available to staff within SoC having granted administrative rights on the SUMS database.

2.2 Product Features

· CRUD operations: Users can perform Create, Read, Update and Delete operations on SUMS related data as listed below.

· Staff
· Student
· Unit
· Unit Instance
· Cohort
· Course
· Course Instance
· Milestone
· Marking Form
2.3 User Classes and Characteristics

There is currently only one role, “Administrator.” Users have the ability to perform the tasks listed below.
· Create new SUMS related data

· Query / Read SUMS related data

· Update SUMS related data

· Delete SUMS related data
· Duplicate Milestones based on a Unit Instance and (optionally) adjust the date.
2.4 Operating Environment

Server

The development server will be a machine running Microsoft Windows XP Professional SP2; the development database is MySQL Community Server 5.0. They are both hosted locally.

The operating server will be a machine running Linux; the operating database is Oracle. They are both hosted by SoC.

The middleware software will be a Java web application server.

Client

Clients are located both on and off UoP campuses. As a minimum requirement the client machine must have a web browser connected to the internet. Minimum recommended versions are: Internet Explorer 6.0 or Mozilla Firefox 1.0. For notifications, the user requires an internet e-mail address and e-mail reader.
Network

The SUMS – Maintain System must be run on a Java web or application server within the Soc network. It must be accessible by both users within and outside UoP network who are registered with SoC department.

2.5 Design and Implementation Constraints

The SUMS – Maintain System source code must be written using Sun Microsystems Java programming language, particularly using the Java EE 5 platform. All editing is carried out using the NetBeans 6.0 IDE. The Struts and Hibernate frameworks are integral to the design of the SUMS – Maintain System as they ensure the SUMS – Maintain System adheres to strict principles surrounding the MVC design pattern, while also providing transparent persistence between database and Java objects.

A repository containing pertinent the SUMS – Maintain System and related SUMS source code, web pages and documentation is made available for use and reuse. Version control and access by developers are maintained in NetBeans by means of the Subversion system.

The end-users should not require any special setup to work with the SUMS – Maintain System web application.

2.6 Assumptions and Dependencies

The SUMS – Maintain System uses data stored by SUMS on a regular basis. This data must be continually available for the SUMS – Maintain System to function correctly.

2.7 System Features

The SUMS – Maintain System accepts data from and displays data to clients in the form of HTML and JSP pages. It generates a response either through the HTTP web interface. This data provided in response is acquired through the Hibernate API and is a subset of data available from the SUMS database.

3 External Interface Requirements

3.1 User Interfaces

The SUMS – Maintain System will be available as an accessible menu in SUMS to staff members with appropriate administrative privileges. The SUMS – Maintain System HTML and JSP pages will follow a theme consistent with SUMS.

3.2 Hardware Interfaces

There are currently no defined hardware interfaces.

3.3 Software Interfaces

The SUMS – Maintain System uses Java EE and Struts APIs which allows the extension of functionality and web services to users over the internet, so no software interfaces are required.

3.4 Communications Interfaces

The SUMS – Maintain System works with computers running the TCP/IP protocol. Using the HTTP protocol, these computers can receive and send responses. These responses are provided in HTML format for consumption by a web browser.

4 Non-functional Requirements

4.1 Archival

Relevant information is generated from the SUMS database. This information is immediately consumed by the client, so no archival efforts are required.

4.2 Audit and Control

Every significant user action gets logged within SUMS.

4.3 Authentication

The SUMS – Maintain System will be available to only SoC staff with administrative rights to the SUMS database. Authentication will be verified on login to SUMS.

4.4 Authorization

All the SUMS – Maintain System development   information is available to SUMS development teams.

4.5 Availability

There are currently no specific availability requirements. A server failure may result in the SUMS – Maintain System being temporarily unavailable.

4.6 Compatibility

The SUMS – Maintain System conforms to the standards listed below.

· Apache Struts 2
· Hibernate 3.2
· HTML 4.0

· HTTP/1.1

· Java SE 6 / Java EE 5
4.7 Configurability

There are currently no defined configurability requirements.

4.8 Data Integrity

SoC already has appropriate procedures in place to ensure data integrity.

4.9 Extensibility

Additional feeds for receiving data may be added as required.

4.10 Installation

The SUMS – Maintain System and its necessary components can be installed on any server capable of running a Java web application server.

4.11 Integration

Using the Java EE and Struts APIs, modules of SUMS are free to integrate the functionality of the SUMS – Maintain System as needed.

4.12 Leveragability / Reuse

Many of the components of the SUMS – Maintain System may be reused in other modules of SUMS.

4.13 Licensing

SoC already has appropriate procedures in place to deal with any licensing issues.

4.14 Localization

The SUMS – Maintain System is currently available in the UK/English locale.

Further localization is possible using the Struts API.

4.15 Maintainability

Maintaining the SUMS – Maintain System requires knowledge of Java EE, Struts 2 and JPA with Hibernate.

4.16 Multiple Environment Support

The SUMS – Maintain System is maintained on a local server while in development. All new features are developed and tested before being released to the production server.

4.17 Personalization

There are currently no defined personalization requirements.

4.18 Portability

The SUMS – Maintain System may be ported to any hardware platform supporting all other constraints outlined as non-functional requirements.

4.19 Privacy

Where necessary, the SUMS – Maintain System makes use of the HTTPS protocol, instead of HTTP protocol, to ensure data privacy while in transmission between server and user machines.

4.20 Reliability

The data accessed by the SUMS – Maintain System is generated from the SUMS database. This data is considered the definitive repository.

4.21 Robustness

Users generating erroneous data are immediately notified through their web browsers or through the Struts API. Users are given the opportunity to correct and resubmit data.

4.22 Security

Only authenticated users are enabled access to the SUMS – Maintain System.

4.23 Usability / Achievability

Users familiar with web browsers should be able to use the SUMS – Maintain System with no training.





















...


<action-mappings>


<action


input="/index.jsp"


name="logonForm"


path="/submitLogonForm"


scope="request"


type="general.actions.SubmitLogonForm"


validate="true">


<forward


name="success"


path="/Index.do"


redirect="true"/>


</action>


...


</action-mappings>


...





import java.io.*;


import javax.servlet.*;


import javax.servlet.http.*;


import org.apache.struts.action.*;





public final class MyAction extends Action {





public ActionForward perform(ActionMapping mapping,


                               ActionForm form,


                               HttpServletRequest request,


                               HttpServletResponse response)


throws IOException, ServletException {





//handle business logic





...





}


}





...


<!-- Standard ActionServlet Configuration -->


<servlet>


<servlet-name>action</servlet-name>


<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>


...


</servlet>





<!-- Standard ActionServlet Mapping -->


<servlet-mapping>


<servlet-name>action</servlet-name>


<url-pattern>*.do</url-pattern>


</servlet-mapping>


...





<ex:tag attribute="${value}">





<ex:tag attribute="<%= pageContext.getAttribute("value") %>">





@Stateless


public class EJBSessionBean implements EJBSession {





@PersistenceContext


EntityManager em;





// ...





}





package javax.persistence;





public interface EntityManager {





/** Make a new instance managed and persistent. */


public void persist(Object entity);





/** Merge the state of the given entity into the current persistence context. */


public <T> T merge(T entity);





/** Remove the instance from the database. */


public void remove(Object entity);





/** Check if the instance is managed in the current persistence context. */


public boolean contains(Object entity);





...





}





<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>





<html>


<body bgcolor="white" 


  


<jsp:useBean id="clock" class="java.util.Date" />


<c:choose>


<c:when test="${clock.hours < 12}">


<h1>Good morning!</h1>


</c:when>


<c:when test="${clock.hours < 18}">


<h1>Good day!</h1>


</c:when>


<c:otherwise>


<h1>Good evening!</h1>


</c:otherwise>


</c:choose>





Welcome to our site, open 24 hours a day.





</body>


</html>





import java.io.IOException;  


import java.io.PrintWriter;





import javax.servlet.ServletException;





import javax.servlet.http.HttpServlet;


import javax.servlet.http.HttpServletRequest;


import javax.servlet.http.HttpServletResponse;





public class ServletName extends HttpServlet


{





public void doGet(HttpServletRequest request, HttpServletResponse response)


throws ServletException, java.io.IOException


{





//Set the MIME type of the response, "text/html"


response.setContentType("text/html");





//Use a PrintWriter to send text data to the client requesting the servlet


java.io.PrintWriter out = response.getWriter( );





//Begin assembling the HTML content


out.println("<html>");





//...





Out.println("</html>");





}





public void doPost(HttpServletRequest request, HttpServletResponse response)


throws ServletException, java.io.IOException


{





//Set the MIME type of the response, "text/html"


response.setContentType("text/html");





//Use a PrintWriter to send text data to the client


java.io.PrintWriter out = response.getWriter( );





//Begin assembling the HTML content


out.println("<html>");





//...





Out.println("</html>");





}





}
















































































































































































public class CohortActionTest extends TestCase


{


    private static final Cohort testCohort = new Cohort();


    static 


    { 


        testCohort.setCohortDescription("2007/2008");


        testCohort.setCohortClosed(false);


        


        findCohort.setCohortDescription(testCohort.getCohortDescription());


    }


    ...


 


    /**


     * Test that the Cohort is created.


     */ 


    public void testCohort() throws Exception  


    { 


        CohortAction instance = new CohortAction(); 


        instance.setCohort(testCohort); 


 


        //Test cohort is not null


        assertTrue(!testCohort.equals(null));





        //Test cohort has not changed


        assertEquals(testCohort, testCohort);


        


        //Test cohort has no primary key set


        assertEquals(testCohort.getCohortId(), instance.getCohort().getCohortId()); 





        //Test cohort has valid description


        assertEquals(testCohort.getCohortDescription(),


			instance.getCohort().getCohortDescription());





        //Test cohort is not 'closed'


        assertEquals(testCohort.getCohortClosed(), 


			instance.getCohort().getCohortClosed());


    }





    //perform other tests


    ... 





    /**


     * Test of doDelete method, of class CohortAction.


     */


    public void testDoDelete() throws Exception


    {


        CohortAction instance = new CohortAction();


        instance.setCohort(testCohort);


        


        String result = instance.doDelete();


        String expResult = ActionSupport.SUCCESS;


        


        //Test cohort removed SUCCESSfully


        assertEquals(expResult, result);





        //Test cohort is not persistent


        assertTrue(!instance.getCohorts().contains(testCohort)); 


        


        try{


            result = null;


            result = instance.doDelete();


        }catch(Exception e){


            //Exception caught


            assertNull(result);


        }


    }


}





// CohortAction.java – Struts2 Action


... 





public class CohortAction {





private Cohort cohort;


private CohortService service = new CohortServiceI();


...





public void prepare() throws Exception { 


...


}





public CohortService getService() 


return this.service;


} 





public void save() 


service.save(cohort);


return Action.SUCCESS;


} 





this.t  cohort;


e(cohort);ice = new CohortServiceI();


tity bean is encapsulated within the hort, Course�������������������������// Getters and Setters 


...





}





// CohortService.java - Interface exposed to client


...


public interface CohortService {





public Cohort find(BigDecimal pk);





public List<Cohort> findAll();





public void remove(BigInteger cohortId); 





public void save(Cohort cohort); 





public List<Cohort> search(String[] searchTerms);


}








// CohortServiceI.java - Interface implementation


... 


public class CohortServiceI implements CohortService {


...


public Cohort find(BigDecimal pk){ ... }





public List<Cohort> findAll(){ ... }





public void remove(BigInteger cohortId){ ... }





public void save(Cohort cohort){ ... } 





public List<Cohort> search(String[] searchTerms) { ... }





}





...


<filter>


<filter-name>Struts2</filter-name>


<filter-class>org.apache.struts2.dispatcher.FilterDispatcher</filter-class>


</filter>





...





<filter-mapping>


<filter-name>Struts2</filter-name>


<url-pattern>/*</url-pattern>


</filter-mapping>


...





...


<interceptors>


<interceptor name="execAndWait" class="ExecuteAndWaitInterceptor" />


<interceptor name="exception" class="ExceptionMappingInterceptor" />


<interceptor name="fileUpload" class="FileUploadInterceptor" />


...


</interceptors>


...





@Result(name="success", value="/jsp/success.jsp")


public class NewAction {





//fields


...





public String execute() {


	return Action.SUCCESS;


}





//getters and setters


...





}





<struts>


...


<action name="NewAction">


<result name="success">/jsp/success.jsp</result>


...


</action>


...


</struts>





import ...





@Entity


@Table(name = "COHORT")


...





public class Cohort implements Serializable {





@Id


@Column(name = "Cohort_Id", nullable = false)


private BigInteger id;





@Column(name = "Cohort_Description", nullable = false)


private String cohortDescription;





@Column(name = "Project_Start_Date")


@Temporal(TemporalType.DATE)


private Date projectStartDate;





@Column(name = "Project_End_Date")


@Temporal(TemporalType.DATE)


private Date projectEndDate;





@Column(name = "Cohort_Closed")


private Boolean cohortClosed;


    


...


// Join Columns & Relationships


...





// Creates a new instance of Cohort


public Cohort() {


}





// Creates a new instance of Artefact with the specified values.


public Artefact(BigInteger cohortId) {


this.cohortId = cohortId;


}





// Creates a new instance of Artefact with the specified values.


public Artefact(BigInteger cohortId, String cohortDescription) {


this.id = id;


this.cohortDescription = cohortDescription;


}





...





// Getters and Setters





...





}


































































































� Also known as the Uniform Resource Locator (URL)


� Applet available at � HYPERLINK "http://java.sun.com/applets/other/TumblingDuke/" ��http://java.sun.com/applets/other/TumblingDuke/�


� Sun Microsystems


� The other two being the Java Platform, Standard Edition (Java SE) and the Java Platform, Micro Edition (Java ME)


� Application Programming Interface (API) – A collection of software components for use in creating other software components and applications


� XML – Extensible Markup Language


� The book, Servlets and JavaServer Pages: The J2EE Technology Web Tier by Jayson Falkner and Kevin W. Jones, provides valuable insight into programming functions and features dealt with by both the JSTL and JSP EL and is therefore recommended for further reading.


� The JSP Expression Language coincided with the release of JSP 2.0, the current JSP specification, and supersedes the JSTL Expression Language defined by the JSTL 1.0 specification


� URL – Uniform Resource Locator; synonymous to the Uniform Resource Identifier (URI)


� EJB 2.0 architecture


� A JMS message listener is similar to an event listener except that it receives JMS messages instead of events


� Also known as the at sign and is represented by the typographical character @


� SQL – Structured Query Language


� ANSI – American National Standards Institute


� RDBMS – Relational Database Management System; ERP – Enterprise Resource Planning


� Ironically, WebWork was initially developed as a spin-off from Apache Struts


� Stack of objects including temporary objects, Model object, Action object and Named objects (provided in order) and accessible using the Object Graph Navigational Language (OGNL)


� IEEE Std 830-1998, Recommended Practice for Software Requirements Specifications (Revision of IEEE Std 830-1993)


� Create, Read, Update and Delete operations


� An intermediate class in the Object Model is designed based on the corresponding join table in the Data Model





 

